

Канальные тепловые насосы вода-воздух со встроенным гидромодулем

PRODIALOGAN

AQUASNAP

ГАРАНТИЯ КАЧЕСТВА

Номинальная холодопроизводительность 18 - 76 кВт Номинальная теплопроизводительность 19 - 80 кВт

CEPUS 30RYH

Тепловые насосы Aquasnap серии 30RYH с передачей теплоты от воздуха к воде предназначены для установки в помещении. Вентилятор конденсатора создает давление, достаточное для подачи и отвода воздуха через систему воздуховодов, которую можно оборудовать шумоглушителями. Тепловые насосы серии 30RYH используют новейшие технические решения: экологически безопасный хладагент HFC-407C, спиральные компрессоры и самонастраивающуюся микропроцессорную систему автоматического управления. Контур хладагента с запатентованным аппаратом ресивер-теплообменник и самонастраивающаяся система управления на базе контроллера PRO-DIALOG Plus обеспечивают надежную и экономичную работу тепловых насосов во всех климатических поясах с температурой воздуха от -10 °C до 45 °C. Тепловые насосы Aquasnap в стандартном исполнении оборудованы гидромодулем, поэтому их монтаж сводится к подключению к электросети и к подсоединению подающей и обратной труб водяного контура.

Конструктивные особенности

Малошумный осевой вентилятор для канальной подачи воздуха. В отличие от радиального осевой вентилятор не требует при монтаже никакой регулировки, так как скорость потока очень мало зависит от аэродинамического сопротивления системы воздуховодов. Это вентилятор с непосредственным приводом, поэтому не возникает необходимости регулировать шкивы или заменять ремень. При неполной тепловой нагрузке и при низкой температуре наружного воздуха вентилятор автоматически переключается на пониженную частоту вращения.

- Наличие встроенного гидромодуля существенно упрощает монтаж теплового насоса. Модуль включает в себя все компоненты, необходимые для работы системы: съемный сетчатый фильтр, высоконапорный циркуляционный насос, расширительный бак, реле протока воды, предохранительный клапан, манометры и продувочные клапаны. Расход воды регулируется с помощью дроссельного клапана. Агрегаты Aquasnap выпускаются также в исполнении без гидромодуля.
- Водяной контур малого объема: контроллер регулирует температуру воды по самонастраивающемуся алгоритму и полностью предотвращает частые включения компрессора. В большинстве случаев для комфортного кондиционирования воздуха бак-накопитель не нужен. Благодаря малому объему воды сокращается расход электроэнергии при переключении агрегата с отопления на охлаждение при смене сезона.
- Экологически безопасный хладагент HFC-407С не оказывает никакого влияния на озоновый слой атмосферы и успешно заменяет хладагент R22 в кондиционерах малой и средней производительности. Испытания, проводившиеся фирмой Carrier в течение нескольких лет, показали, что агрегаты, работающие на НFC-407С, обладают такой же надежностью, как и работающие на R-22, и даже несколько более высокой производительностью.
- Запатентованный фирмой «Керриер» ресивер-теплообменник повышает надежность и эффективность тепловых насосов серии 30RYH. В режиме отопления хладагент конденсируется в этом ресивере, установленном на выходе пластинчатого теплообменника. Данный ап-

парат компенсирует различие объемов теплообменников хладагент-вода (пластинчатого) и хладагент-воздух, оптимизирует объем циркулирующего хладагента для режимов отопления и охлаждения, а также обеспечивает прекрасное регулирование переохлаждения и перегрева. В результате увеличивается срок службы компрессора (поскольку исключена опасность попадания в него жидкого хладагента) и повышается эффективность эксплуатации теплообменников.

- Самонастраивающийся алгоритм оптимизирует режим оттаивания. Благодаря этому алгоритму и новой конструкции теплообменника хладагент-воздух длительность цикла оттаивания сокращается в среднем на 50 %. Для еще более надежной защиты от обмерзания в основание теплообменника встроен электронагреватель.
- Спиральные компрессоры надежны и долговечны, не требуют технического обслуживания и отличаются незначительным уровнем шума и вибрации. Наличие двух компрессоров в одном контуре (начиная с типоразмера 30RYH 050) позволяет снизить пусковой ток и мощность, потребляемую при неполной нагрузке.
- Разгерметизация холодильного контура в течение срока службы исключается, так как все трубопроводы и компоненты этого контура имеют сварные соединения. Реле давления с капиллярными трубками, через которые ранее была возможна утечка, заменены датчиками давления, установленными непосредственно на трубопроводах.
- Электромонтаж предельно упрощен. Тепловые насосы Aquasnap в стандартном исполнении оборудованы вводным выключателем и подключаются к трехфазной сети с изолированной нейтралью единственным кабелем.
- Широкие панели корпуса, легко снимаемые без применения специального инструмента, и шарнирная дверца панели управления обеспечивают простой доступ к внутренним элементам.
- При низких температурах наружного воздуха может быть установлен дополнительный контроллер электрического воздухонагревателя, поддерживающий до четырех ступеней регулирования мощности.

Контроллер PRO-DIALOG Plus

PRO-DIALOG Plus представляет собой современный микропроцессорный контроллер с удобным интерфейсом. Контроллер непрерывно следит за всеми рабочими параметрами агрегата и оптимизирует режимы работы компрессоров, вентилятора, клапана реверсирования цикла и циркуляционного насоса.

Многофункциональная система управления

 Самонастраивающийся контроллер PRO-DIALOG Plus обеспечивает полную защиту компрессоров. Непре-

- рывно проверяя и корректируя рабочие параметры (значения температуры и давления и т.п.), контроллер поддерживает идеальные условия для работы компрессоров, не допуская их частых включений. Поскольку управляющие воздействия упреждают возникновение аварийных ситуаций, контроллер, как правило, не допускает аварийных остановов теплового насоса.
- Для оптимизации потребления электроэнергии контроллер PRO-DIALOG Plus автоматически, в зависимости от температуры наружного воздуха, изменяет уставку температуры воды на выходе, в определенных ситуациях (например, во время отсутствия людей в помещении) переключается на вторую уставку, а также обеспечивает автоматическое переключение режимов отопления и охлаждения.

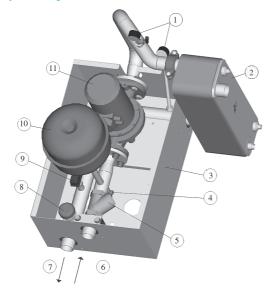
Простой и наглядный операторский интерфейс

- На светодиодиодах и двух цифровых дисплеях оперативно отображается вся информация, необходимая для управления агрегатом.
- Кнопки, удобно расположенные на мнемосхеме теплового насоса, позволяют немедленно индицировать рабочие параметры: значения температуры, давления, уставки, продолжительность работы компрессоров и т.п.
- Для быстрой и полной диагностики и настройки системы предусмотрены 10 меню, через которые осуществляется доступ ко всем параметрам контроля и управления и журналу аварий, если таковые были.

Дистанционное управление

- Контроллер PRO-DIALOG Plus предусматривает возможность дистанционного управления. С помощью гальванически развязанных контактов осуществляется дистанционное включение и отключение теплового насоса, выбор режима охлаждения или отопления, ограничение потребляемой мощности или выбор второй уставки температуры. В системе предусмотрена дистанционная сигнализация о любых возможных отклонениях параметров от заданных значений.
- Установка платы «CNN Clock Board» (опция или дополнительная принадлежность) позволяет программировать управление по времени:
 - время включения и отключения,
 - время работы по второй уставке (например, при отсутствии людей в помещении),
 - время работы вентилятора с низкой частотой вращения (например, по ночам).

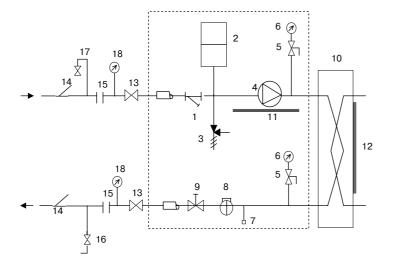
Эта плата также позволяет управлять двумя параллельно работающими агрегатами и оснащена последовательным портом RS 485 для интегрирования в систему управления инженерным оборудованием зданий.


Панель управления контроллера PRO-DIALOG Plus

2 30RYH

Опции и принадлежности

	Опция	Принадлежность
Защитное покрытие воздушного теплообменника для эксплуатации в умеренно солевой атмосфере или в воздушном бассейне города	•	
Электронный стартер компрессора для уменьшения пускового тока (модели 30RYH 040-080)		
Тепловой насос без гидромодуля		
Гидромодуль с двумя насосами (модели 30RYH 040-080)		
Плата управления по времени «CNN Clock Board» с последовательным портом		
Контроллер дополнительного электронагревателя (3 ступени переключения мощности + 1 аварийная ступень)		
Опорная рама с поддоном для конденсата		
Воздухозаборный фильтр с установкой на направляющих		
Исполнение для наружного монтажа (модели 30RYH 040-080)		


Гидромодуль

Обозначения

- Водяные манометры на входе и выходе теплообменника и продувочные вентили
- 2 Пластинчатый теплообменник
- 3 Теплоизолированный кожух защиты от замораживания
- 4 Предохранительный клапан
- 5 Сетчатый фильтр
- 6 Вход воды (возврат от потребителя)
- 7 Выход воды (подача к потребителю)
- 8 Дроссельный клапан регулирования расхода воды
- 9 Реле протока воды
- 10 Расширительный бак
- 11 Многокамерный (модели 30RYH 017-033) или однокамерный (модели 30RYH 040-080) циркуляционный насос

Типовая схема гидромодуля

Обозначения

Компоненты гидромодуля

- 1 Сетчатый фильтр
- 2 Расширительный бак
- 3 Предохранительный клапан
- 4 Циркуляционный насос
- Продувочный (для контура) и запорный (для манометра) клапаны
- 6 Манометры для измерения перепада давлений в теплообменнике
- 7 Сливная пробка
- В Реле протока
- 9 Клапан регулирования расхода воды
- 10 Пластинчатый теплообменник
- 11 Нагреватель для защиты гидромодуля от замораживания (модели 30RYH 040-080)
- 12 Нагреватель для защиты теплообменника от замораживания (модели 30RYH 040-080)

Внешние компоненты водяного контура

- 13 Обратный клапан
- 14 Гильза термометра
- 15 Гибкое соединение
- 16 Клапан для заполнения системы
- 17 Воздуховыпускной клапан
- 18 Манометр
- --- Гидромодуль (для агрегатов со встроенным гидромодулем)

Примечание.

В исполнении без гидромодуля (опция) агрегат оборудован реле протока.

Технические характеристики

30RYH		017	021	026	033	040	050	060	070	080	
Номинальная холодопроизводительность нетто	кВт	18	23	24	31	37	44	56	65	76	
Номинальная теплопроизводительность нетто"	кВт	19	22,9	26,2	35,6	39	50	57	66	80	
Эксплуатационная масса	КГ										
с гидромодулем		410	440	460	475	560	623	640	702	747	
без гидромодуля		385	415	435	450	526	588	603	664	710	
Масса хладагента R-407C	ΚΓ	6,4	6,6	7,4	8,6	10,3	11,4	12,5	13,3	17,3	
Компрессоры		Спира	льные ге	ерметичн	ые, 48,3	C ⁻¹					
Количество		1	1	1	1	1	2	2	2	2	
Ступени мощности		1	1	1	1	1	2	2	2	2	
Минимальная производительность	%	100	100	100	100	100	46	42	50	50	
Контроллер		PRO-E	IALOG P	lus							
Теплообменник хладагент-воздух	воздух Медные трубки с внутренним и наружным алюминиевым оребрением										
Вентилятор		Осевой для канальной подачи воздуха									
Количество		1	1	1	1	1	1	1	1	1	
Располагаемое статическое давление	Па	100	100	100	100	150	150	150	150	150	
Полный расход воздуха											
(при высокой частоте вращения)	л/с	1940	1940	1940	2500	3890	3890	4720	5830	5830	
Частота вращения (высокая/низкая)	C ⁻¹	24/12	24/12	24/12	24/12	24/12	24/12	24/12	24/12	24/12	
Теплообменник хладагент-вода		Сварн	ой пласт	гинчатый	i						
Объем воды	Л	1,6	2,0	2,3	3,0	3,6	4,6	5,9	6,5	7,6	
Максимальное рабочее давление со стороны воды											
(исполнение без гидромодуля)	кПа	1000	1000	1000	1000	1000	1000	1000	1000	1000	
Гидромодуль		маном регули	етры, пр прования	одувочн прасхода	ые клапа а воды	аны, рел	е проток	а и дрос	сельный	ельный бак, і клапан	
Насос (центробежный)		Один г	иногокам	лерный,	48,3 c ⁻¹	Один с	однокаме	ерный, 4	8,3 c ⁻¹		
Количество		1	1	1	1	1	1	1	1	1	
Вместимость расширительного бака	Л	8	8	8	8	12	12	12	12	12	
Максимальное рабочее давление со стороны воды		050	050	050	050	000	000	000	000	000	
(исполнение с гидромодулем)	кПа	250	250	250	250	300	300	300	300	300	
Присоединение водяного контура (с гидромодулем и без него)		Патруб	бки с наг	т йонжус	рубной р	езьбой					
Трубная резьба	дюйм	1 1/4	1 1/4	1 1/4	1 1/4	2	2	2	2	2	
Наружный диаметр труб	MM	42,4	42,4	42.4	42,4	60,3	60,3	60,3	60,3	60.3	

При номинальных условиях по стандарту Eurovent: температура на входе / выходе водяного теплообменника = 12 °C / 7 °C, температура на-

Номинальная холодопроизводительность нетто по стандарту Eurovent = холодопроизводительность брутто + холодопроизводительность,

соответствующая располагаемому давлению (расход х давление/0,3).

При номинальных условиях по стандарту Eurovent: температура на входе / выходе воздушного теплообменника = 40 °C / 45 °C, температура наружного воздуха по сухому термометру = 7 °C при относительной влажности 87 %.

Номинальная теплопроизводительность нетто по стандарту Eurovent = теплопроизводительность брутто минус теплопроизводительность, соответствующая располагаемому давлению (расход х давление/0,3).

Электрические характеристики

30RYH		017	021	026	033	040	050	060	070	080		
Электросеть												
Номинальные параметры		400 B,	3 фазы,	50 Гц								
Допустимое напряжение	В	360-440										
Питание схемы управления	От встроенного трансформатора											
Максимальная потребляемая мощность [*]	кВт	9,65	11,95	13,65	17,45	22,2	26,5	30,8	37,2	43,00		
Номинальный потребляемый ток [™]	Α	15,8	18,5	20,7	27,6	34,2	39,8	49,3	60,0	65,4		
Максимальный потребляемый ток***	Α	17,9	21,7	24,4	31,2	39,1	46,7	53,4	67,2	75,2		
Максимальный пусковой ток												
Агрегат в стандартном исполнении ⁺	Α	90,5	134,5	134,5	140,7	184,6	156,8	162,9	176,7	220,7		
С электронным пускателем**	Α	-	-	-	-	123,4	111,3	115,7	129,5	159,4		

- Мощность, потребляемая компрессором (компрессорами), вентилятором и насосом в экстремальных условиях эксплуатации: температура воды на входе / выходе = 15 °C / 10 °C, максимальная температура поступающего воздуха = 45 °C ±1 К (в зависимости от модели), номинальное напряжение 400 В (значение указано на заводской табличке).
- " Номинальный потребляемый ток при стандартных условиях по Eurovent: температуры воды на входе / выходе испарителя = 12 °C / 7 °C, температура наружного воздуха = 35 °C. Значения тока приведены для номинального напряжения 400 В (значение указано на заводской табличке).
- Максимальный потребляемый ток при максимальной потребляемой мощности и при номинальном напряжении 400 В (значение указано на заводской табличке).
- † Максимальное мгновенное значение пускового тока при номинальном напряжении сети 400 В и при непосредственном пуске компрессора (максимальный рабочий ток меньшего компрессора (-ов) + ток вентилятора + ток насоса + ток большего компрессора при заторможенном роторе).
- ‡ Максимальное мгновенное значение пускового тока при номинальном напряжении сети 400 В и при пуске компрессора от электронного пускателя (максимальный рабочий ток меньшего компрессора (-ов) + ток вентилятора + ток насоса + пусковой ток большего компрессора при пониженной нагрузке).

Примечания к электрическим характеристикам

- Агрегаты 30RYH подключаются к электросети одним силовым кабелем.
- На панели управления расположены следующие стандартные элементы:
 - пусковое устройство и устройство защиты двигателя для каждого компрессора, вентилятора и насоса
 - устройства управления.
- Подключение на месте монтажа:
 - Электромонтаж агрегата должен выполняться в соответствии с действующими правилами и нормами.
- Агрегаты Carrier серии 30RYH разработаны и изготовлены в соответствии с действующими правилами и нормами. При разработке электрического оборудования также учтены рекомендации европейского стандарта EN 60204-1 (безопасность машин – детали электрических машин – часть 1: общие правила).

Примечания

- Соблюдение рекомендаций европейского стандарта IEC 60364 обычно обеспечивает выполнение директив по монтажу. Соблюдение стандарта EN 60204-1 обеспечивает выполнение § 1.5.1 Директивы по машиностроению.
- Электрические характеристики машин приводятся в Приложении В стандарта EN 60204-1.
- 1. Условия эксплуатации агрегатов серии 30RYH:
- а. Модели 30RYH 017-080 для установки в помещении Условия эксплуатации* - по классификации EN 60634 § 3:
 - температура окружающего воздуха: от +5 $^{\circ}\text{C}$ до +40 $^{\circ}\text{C}$, класс AA4
 - относительная влажность (без выпадения конденсата*):
 50 % при температуре 40 °C
 90 % при температуре 20 °C
 - высота над уровнем моря: не более 2000 м
 - установка в помещении*
 - наличие воды: класс AD2* (допускаются водяные капли)
 - наличие твердых частиц: класс АЕ2* (незначительная запыленность)
 - присутствие агрессивных и загрязняющих веществ: класс AF1 (пренебрежимо малые концентрации)
 - ударное и вибрационное воздействие: класс AG2, AH2

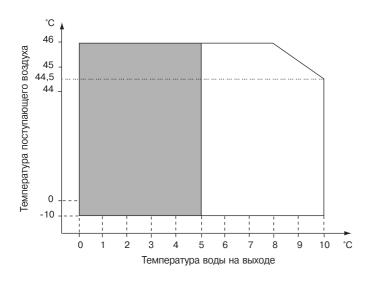
Уровень подготовки персонала: класс BA4* (квалифицированный персонал – IEC 60364)

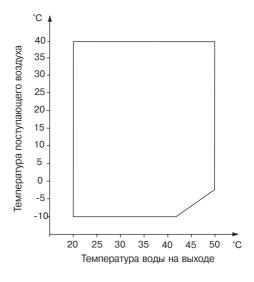
- б. Модели 30RYH 040-080 для установки вне помещения Условия эксплуатации* - по классификации EN 60721:
 - температура окружающего воздуха: от -10 °С до +46 °С, класс 4К3⁻⁻
 - высота над уровнем моря: не более 2000 м
 - наличие твердых частиц: класс 4S2** (незначительная запыленность)
 - присутствие агрессивных и загрязняющих веществ: класс 4C2 (пренебрежимо малые концентрации)
 - ударное и вибрационное воздействие: класс 4М2

Уровень подготовки персонала: класс BA4** (квалифицированный персонал – IEC 60364)

- 2. Допустимое отклонение частоты электропитания: ±2 Гц.
- Не допускается подключение теплового насоса к нейтрали (N) электросети без разделительного трансформатора.
- Устройства защиты проводников сетевого питания от перегрузки по току не входят в комплект поставки.
- Установленные на заводе-изготовителе вводной и автоматические выключатели отвечают требованиям стандарта EN 60947-3 (соответствует стандарту IEC 60947-3).
- Тепловые насосы предназначены для подключения к TN-сетям (стандарт IEC 60364). При подключении агрегата к IT-сети его необходимо заземлить на отдельный контур заземления. При необходимости следует обратиться за консультацией в соответствующую региональную организацию.

Примечание.


Во всех случаях, когда условия монтажа отличаются от описанных выше или когда необходимо учесть другие условия эксплуатации, обращайтесь в местное представительство компании Carrier.


- Согласно стандарту IEC 60529 при этих условиях эксплуатации требуется степень защиты IP21B. Все агрегаты 30RYH 017-080 имеют степень защиты IP23C и удовлетворяют указанным требованиям.
- ** Согласно стандарту IEC 60529 при этих условиях эксплуатации требуется степень защиты IP43BW. Все агрегаты 30RYH 017-080 имеют степень защиты IP45CW и удовлетворяют указанным требованиям.

Предельные эксплуатационные параметры

Рабочий диапазон в режиме охлаждения

Рабочий диапазон в режиме обогрева

Примечания.

- ∆t водяного теплообменника = 5 K
- Модели 30RYH 017-033: агрегат должен быть установлен в помещении, температура в котором не опускается до точки замерзания. Модели 30RYH 040-080: испаритель и гидромодуль могут работать при температуре окружающего воздуха до -10 °C.
- Максимальная температура поступающего воздуха при номинальном статическом давлении вентилятора.
- Рабочий диапазон при использовании соответствующего антифриза и специальной настройке контроллера PRO-DIALOG Plus

Максимальная температура поступающего воздуха, °С

30RYH	Расход воздух	Расход воздуха										
	Минимальный	Номинальный	Максимальный									
017-026	44	46	47,5									
033	44	46	47									
040-050	44,5	46	47									
060	44,5	46	47									
070-080	44,5	46	47									

Характеристики вентилятора

30RYH	Мин. рас статич. д	сполаг. цавление*		располаг. давление	Макс. располаг. статич. давление					
	Давлени	е Расход	Давлен	ие Расход	Давление Расход					
	Па	л/с	Па	л/с	Па	л/с				
017-026	0	2500	100	1940	150	1530				
033	0	2920	100	2500	200	1940				
040-050	0	4580	150	3890	230	3330				
060	0	5560	150	4720	230	4030				
070-080	0	6810	150	5830	230	5280				

Без присоединения воздуховодов

Поправочные коэффициенты

30RYH	Холодопроиз	водительность	Потребляемая мощность							
	Мин. расход	Макс. расход*	Мин. расход	Макс. расход*						
017-026	0,98	1,01	1,03	0,97						
033	0,98	1,005	1,03	0,98						
040-050	0,985	1,005	1,02	0,98						
060	0,985	1,005	1,02	0,98						
070-080	0,985	1,005	1,01	0,98						

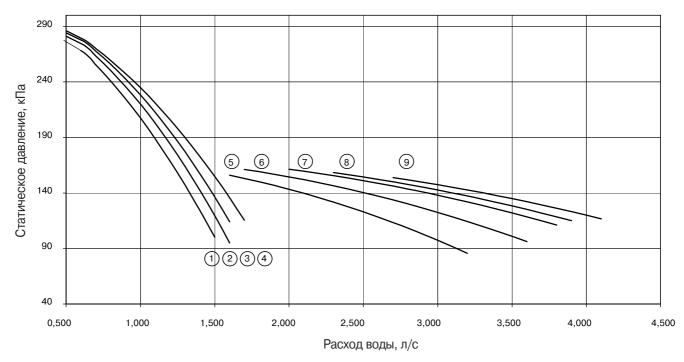
Без присоединения воздуховодов

Поправочные коэффициенты для холодопроизводительности и потребляемой мощности при расходе, отличающемся от номи-

Расход воды через теплообменник

30RYH	Минимальный расход*, л/с	Номин. расход, л/с	Макс. расход**, л/с	Макс. расход***, л/с
	1			
017	0,58	0,85	1,6	1,6
021	0,70	1,07	1,8	1,9
026	0,81	1,15	1,9	2,2
033	1,10	1,49	2,0	2,7
040	1,20	1,81	3,7	3,7
050	1,19	2,14	4,4	4,6
060	1,46	2,70	5,1	5,8
070	1,66	3,10	5,4	6,4
080	1.92	3.64	5,7	7.3

Минимальный расход в режиме охлаждения


Максимальная температура воды на входе в теплообменник

30RYH	воды на	бменник	воды на	бменник	Макс. температура воды на входе в теплообменник (обогрев)				
	При пуске, °C	При отключ., °С	При пуске, °С	При отключ., °С	При пуске, °С	При отключ., °C			
017	35	60	10	3	50	60			
021	35	60	10	3	50	60			
026	35	60	10	10 3		60			
033	35	60	10	3	50	60			
040	35	60	10	3	50	60			
050	35	60	10	3	50	60			
060	35	60	10	3	50	60			
070	35	60	10	3	50 60				
080	35	60	10	3	50 60				

Максимальный расход при располагаемом давлении 50 кПа (исполнение с гидромодулем)

Максимальный расход при перепаде давлений в пластинчатом теплообменнике 100 кПа (исполнение без гидромодуля)

Циркуляционный насос: располагаемое статическое давление

Обозначения

1 30RYH 017 6 30RYH 050 2 30RYH 021 7 30RYH 060 3 30RYH 026 8 30RYH 070 4 30RYH 033 9 30RYH 080

5 30RYH 040

Объем воды в контуре

Минимальный объем воды в контуре

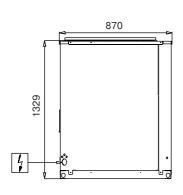
Объем в литрах = CAP (кВт) х N^{\cdot} , где CAP – номинальная холодопроизводительность при номинальных условиях эксплуатации.

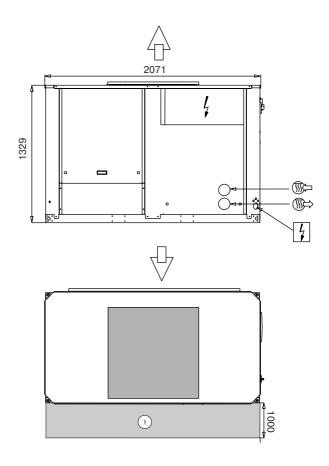
Комфортное кондиционирование	N*	
30 RYH 017 - 040	3,5	
30 RYH 050 - 080	2,5	

Технологическое кондиционирование	
30RYH 017 - 080	См. примечание

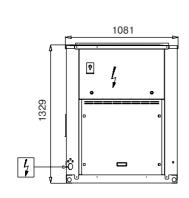
Примечание.

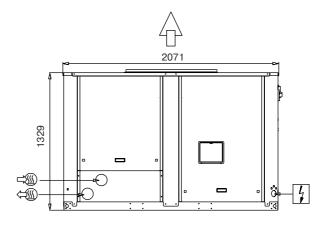
Если агрегат применяется для охлаждения рабочего газа в технологическом процессе и при этом требуется высокая стабильность температуры охлаждающей воды, объем воды в контуре должен быть увеличен.


Максимальный объем воды в контуре


Агрегаты со встроенным гидромодулем оснащены расширительным баком, объем этого бака лимитирует допустимый объем воды в контуре. В приведенной ниже таблице указаны максимальные объемы для воды и водных растворов этиленгликоля различной концентрации.

	30RYH 017-033 (в литрах)	30RYH 040-080 (в литрах)
Вода	400	600
10 % этиленгликоля	300	450
20 % этиленгликоля	250	400
35 % этиленгликоля	200	300


Габаритные размеры и минимально необходимые расстояния


30RYH 017-033

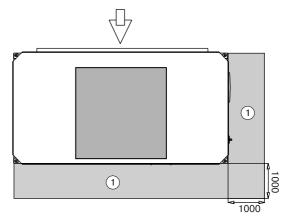
30RYH 040-080

Обозначения

Все размеры приведены в мм

1 Рекомендуемая ширина свободного пространства

Вход воды


Выход воды

Ввод силового кабеля

Присоединение воздуховодов

Примечание.

Чертежи носят иллюстративный характер. Детальные чертежи предоставляются по просьбе заказчика.

8 30RYH

Холодопроизводительность

30RYH	Тем	ипера	гура в	возду	ха на	вход	e, °C																							
	25			,			30						35						40						45					
LWT	CAP	COMP	UNIT	COOL		PRES	CAP	COMP	UNIT	COOL		PRES	CAP	COMP	UNIT	COOL		PRES	CAP	COMP	UNIT	COOL		PRES	CAP	COMP	UNIT	COOL		PRES
°C	кВт		кВт	л/с		кПа	кВт	кВт	кВт	л/с	кПа	кПа	кВт		кВт	л/с	кПа		кВт	кВт	кВт	л/с	кПа	кПа		кВт	кВт	л/с	кПа	кПа
017 5	18	4,7	5,4	0,9	33	226	18	5,2	6,0	0,8	30	233	17	5,8	6,5	0,8	27	241	16	6,4	7,2	0,8	24	248	15	7,0	7,8	0,7	21	254
021	23	6,3	7,0	1,1	34	203	22	7,0	7,7	1,1	31	212	21	7,7	8,4	1,0	28	222	20	8,4	9,1	0,9	24	231	19	9,2	9,9	0,9	22	239
026	25	7,1	7,7	1,2	27	201	24	7,8	8,4	1,1	25	211	23	8,6	9,2	1,1	22	219	21	9,4	10,1	1,0	20	228	20	10,3	11,0	1,0	18	237
033	32	9,7	10,7	1,5	31	151	31	10,6	11,6	1,5	28	164	29	11,7	12,7	1,4	25	177	28	12,8	13,8	1,3	22	191	26	14,0	15,0	1,2	20	204
040	39	,	13,6	,	26	148	37	,	14,8	,		152		,	16,1	,	20	155	32	,	17,5	,		157	l .	16,2	,	,		160
050	46	,	16,1	,	23	149	44	,	17,7	,		152	41	,	19,4	,	18	155	39	,	21,2	,	16	158	l .	20,5	,	,	14	161
060	59		19,2		23	144	56		20,9			148	52		22,8		18	152	49		24,8		16	155	l .	23,7			14	158
070	67	,	24,5	,	24	138	64	,	26,5	,		143	60	,	28,6	,	20	147	57	,	30,9	,	17	150	l .	27,9	,	,		154
080	80	22,4	27,5	3,8	27	127	76	24,8	29,9	3,6	24	133	71	27,3	32,4	3,4	21	139	67	30,0	35,1	3,2	19	144	62	32,8	38,0	3,0	16	149
017 6	19	4,7	5,5	0,9	35	220	18	5,2	6,0	0,9	32	227	17	5,8	6,6	0,8	29	236	16	6,4	7,2	0,8	25	244	15	7,0	7,9	0,7	22	251
021	24	6,4	7,1	1,2	37	196	23	7,0	7,7	1,1	33	206		7,7	8,4	1,0	30	215	21	8,5	9,2	1,0	27	225	19	9,3	10,0	0,9	23	234
026	26	7,1	7,8	1,2	29	194	25	7,9	8,5	1,2		205	23	8,6	9,3	1,1	24	214	22	,	10,1	,	21	224	21	,	11,0	,	19	233
033	34	9,8	10,8	,	33	139	32	,	11,8	,		154		,	12,8	,	27	168	29	,	13,9	,	24	182	l .	14,1	,	,		196
040	40	,	13,7	, -	28	146	38	,	14,9	, -	24	150	36	,	16,2		22	153	34		17,6		19	156	31	,	19,1	,	17	158
050	48	,	16,3	,	24	147	45	,	17,9	,		151	43	,	19,6	,	19	154	40		21,3		17	157	l .	20,7	,	,	15	160
060	61	,	19,4	,	24	142	57	,	21,1	,		146	54	,	23,0	,	19	150	51	,	25,0	,	17	153	48	23,9	,	,		156
070 080	70		24,7		26	135	66		26,7			140			28,8		21	144	59		31,1		19	148	l	28,2			16	152
	83		27,8		29	123	78		30,2			130	74	_	32,7	_	23	136	69		35,4		20	141	-	33,2			18	147
017 7	20	4,8	5,5	0,9	38	215	19	5,3	6,0	0,9		222	18	5,9	6,6	0,9	31	231	17	6,5	7,2	0,8	27	239	16	7,1	7,9	0,8	24	247
021	25	6,5	7,2	1,2	39	188	24	7,1	7,8	1,1		199	23	7,8	8,5	1,1	32	210	21	8,6	9,3	1,0	28	220	l	9,4	10,1	,	25	230
026	27	,	, -	1,3	31	187	26	7,9	8,6	1,2		198	24	8,7	,	1,2	25	208	23	9,6	10,2		23	218	l .	10,4	,	,	20	227
033 040	35	9,9	11,0	,	35	129	33	,	11,9	,		145	31	,	12,9	,	29	158	30	,	14,0	,	26	173	l	14,2	,	,		189
050	42	,	13,9 16,5	,	29 26	144 145	39 47	,	15,1 18,1	,		147 149	37 44	,	16,3 19,7	,	23 20	151 152	35 41	,	17,7 21,5	,	21 18	154 155	l .	16,6 20,9	,	,	18 16	157 158
060	63	,	19,5	,	26	139	59	,	21,3	,		149	56	,	23,2	,	21	148	53	,	25,2	,	18	151		24,2	,	,	16	155
070	72	,	24,9	,	28	132	68		26.9			137	65	,	29,0	,	23	142	61	,	31,3	,	20	146		28.5	,	,	18	150
080	85	,	28,1	,	31	120	81	,	30,5	,		127	76	,	33,0	,	24	133	71	,	35,8	,	21	139	l .	33,6	,	,	19	144
017 8	-			_									-						-							-	-			
021	21	4,8	5,5	1,0	41	208	20	5,3	6,1	0,9		217	19	5,9	6,7	0,9	33	226	17	6,5	7,3	0,8	29	234	_	7,2	7,9	0,8	26	242
026	26	,	7,2 7,9	1,2 1,3	42 33	180 180	25 26	7,2 8,0	7,9 8,7	1,2 1,3		192 191	23 25	7,9 8,8	8,6 9,4	1,1 1,2	34 27	203	22 24	8,6 9,6	9,3 10,3	1,1	30 25	213 211	21	9,4 10,5	10,1	,		225 222
033	36	, -	11,1	,	38	118	34	,	12,0	,		133	32	,	13,0		31	151	31	,	14,1		28	166	l .	14,3	,	,		180
040	43	,	14,0	,	31	142	41	,	15,2	,		145	38	,	16,5	,	25	149	36	,	17,9		22	153	34	16,7	,	,	20	155
050	51	,	16,7	,	27	143	48	,	18,2	,		147	46	,	19,9	,	22	150	43	,	21,7	,	19	153	-	21,1	,	,	17	157
060	65		19,7		27	137	61	,	21,5	,		141	58	,	23,4	,		145	54	,	25,4	,	20	149		24,4	,	,		153
070	74		25,2		30	129	70		27,1			134	67		29,3		24	139	63		31,6		21	144	l .	28,8			19	148
080	88	,	28,4	,		116	83	,	30,8	,		123	79	,	33,3	,	26	130	74	,	36,1	,	23	136	l	33,9	,	,	20	142
017 10	22	4,9	5,6	1,0	46	196	21	5,4	6,2	1,0	42	206	20	6.0	6.7	0,9	38	215	19	6.6	7,4	0,9	34	224	18	7,3	8.0	0,8	29	234
021	27	6.7	7,4	1,3	48	164	26	7,3	8.0	1,2		178	25	8,0	8,7	1,2	39	190	23	8,8	9,5	1,1	34	203	l	9,6	10,3	,	30	213
026	29	7,4	8,1	1,4	37	165	28	8,2	8,8	1,3		176	27	8,9	9,6	1,3	31	189	25	9,8	10,4		28	199	24	10,7	,	,	25	211
033	38	,	11,4	,	43	94	36	,	12,3	,		112	35	,	13,3	,	35	131	33	,	14,4	,	32	147	31	,	15,5	,		164
040	46	11,8	14,2	2,2	35	137	43	12,9	15,4	2,1	32	141	41	14,2	16,7	2,0	28	145	38	15,6	18,1	1,9	25	149	36	17,0	19,6	1,8	22	152
050	54	14,7	17,0	2,6	30	139	51	16,3	18,6	2,5	27	143	48	17,9	20,2	2,3	25	146	46	19,6	22,0	2,2	22	150	43	21,4	23,9	2,1	19	153
060	69	17,2	20,1	3,3	31	131	65	18,9	21,9	3,1	28	136	61	20,8	23,8	3,0	25	141	58	22,8	25,8	2,8	22	145	54	24,9	28,0	2,6	19	150
070	79	20,4	25,6	3,8		122	75	22,4	27,6	3,6		128	71		29,8		27	133	67	26,9	32,1	3,2		139	l	29,3			21	144
080	93	23,9	29,0	4,5	36	108	88	26,3	31,4	4,2	32	116	83	28,9	34,0	4,0	29	123	78	31,7	36,8	3,8	26	130	73	34,6	39,8	3,5	22	137
-																			-											

Обозначения:

LWT CAP, kBT

- Температура воды на выходе, °С

 Номинальная холодопроизводительность нетто = холодопроизводительность брутто + холодопроизводительность, соответствующая располагаемому давлению (расход х давление/0,3)

COMP, KBT UNIT, KBT - Мощность, потребляемая компрессорами

 Мощность, потребляемая агрегатом (компрессоры, вентилятор, схема управления и насосы), минус холодопроизводительность, соответствующая располагаемому давлению (расход х

давление/0,3)

COOL, **л/сек** – Расход воды в испарителе

COOL, кПа

- Перепад давлений в испарителе

Press, кПа – Располагаемое давление на выходе агрегата, имеющего гидромодуль с одним

насосом

– Холодопроизводительность при номинальных условиях по стандарту Eurovent

Поправочные коэффициенты для полной нагрузки по результатам лабораторных испытаний по стандарту Eurovent:

Холодопроизводительность (нетто) 1,000 Показатель энергетической эффективности 1,000 Перепад давлений на испарителе 1,000

Условия измерений:

Агрегаты стандартного исполнения Хладагент: R-407C

Повышение температуры

в испарителе: 5 K Теплоноситель: вода

Коэффициент загрязнения: $0,44 \times 10 \text{ м}^{-4} \text{ (м}^2 \text{ K)/BT}$ Рабочие характеристики измерены по стандарту EN 12055

Теплопроизводительность

30RY	/H	Тем	перат	ура в	озду	ха н	а вход	де, °С)																					
	_	-10						-5						0						7					10					
	¥	CAP	COMP	UNIT	COND		PRES	CAP	COMP	UNIT	COND		PRES	CAP	COMP	UNIT	COND		PRES	CAP	COMP	UNIT	COND	PRES	CAP	COMF	UNIT	COND		PRES
	°C	кВт	кВт	кВт	л/с	кПа	кПа	кВт	кВт	кВт	л/с	кПа	кПа	кВт	кВт	кВт	л/с	кПа	кПа	кВт	кВт	кВт	л/с к	Па кПа	кВт	кВт	кВт	л/с	кПа	кПа
017	30	11 2	4,6	5,6	0,52	10	282	12.7	7 4,7	5,6	0,60		273	15.0	4.8	5,7	0,72		258	21 1	4,4	5,1	1,01 3		22 (9 4,4	5 1	1,10		198
021	00	1 ′	,	6,5	0,64		276		5 5,7	,	0,74		266		,	,	0,88		249		,	,	1,23 3		1 '	,	,	1,33		
026		1 '	,	6,6	,		266	,	5.9	,	0,84		254		,	,	1,01		233					4 176				1,48		
033		1 ′	8,8	,	1,00		240	, ,	8,9	,	1,14			,	,	,	1,36		189	1 '	,	,	1,85 4		1 '	,	,	1 2,00		
040				11,5							1,21						1,44		161					7 147				5 2,13		
050		1 '	,	14,6	,			,	,	,	1,59			,	,	,	1,90		158	1 '	,	,	2,74 3		1 '	,	,	2,91		
060				16,5							1,80		166	45,7	13,7	16,9	2,15	13	160					3 143				3,14		
070		39,1	14,6	20,3	1,83	7	167	44,4	1 14,7	20,3	2,09	10	164	53,0	15,3	20,7	2,50	14	157	70,0	17,0	22,2	3,32 2	4 138	75,0	17,2	2 22,4	1 3,59	28	131
080		46,6	17,8	23,3	2,20	8	164	53,0	17,9	23,3	2,51	11	160	63,0	18,7	23,9	3,00	16	151	85,0	19,4	24,4	4,05 2	8 124	91,0	19,6	24,7	4,35	33	115
017	35	11.0	5,0	6.0	0,52	10	282	12.5	5 5.1	6.0	0,59	13	274	14.9	5.2	6.1	0,71	19	260	20.4	4.9	5.6	0.98 3	6 219	22.2	2 4.9	5.7	1,06	42	204
021				7,0	,		-	, ,	,	,	0,73		267	, -	,	,	0,87		250	1 '	,	,	,	3 205	1 '	,	,	1,29		186
026				7,2			267				0,83		256				0,99		234				1,33 3					1,45		161
033		1 '	,	10,6	,		243	,	,	,	1,12			,	,	,	1,34		191	1 '	,	,	1,80 4		1 '	,	,	1,96		71
040		23,0	9,4	12,3	1,04	7	169	26,0	9,5	12,3	1,19	10	166	30,8	9,9	12,6	1,43	14	162	40,6	10,9	13,5	1,90 2	5 149	44,0	0 11,1	1 13,6	2,07	30	144
050		29,7	13,1	15,8	1,37	8	168	33,7	7 13,1	15,8	1,57	11	165	40,1	13,6	16,1	1,88	15	159	55,0	14,2	16,5	2,60 2	9 140	59,0	14,4	1 16,7	7 2,77	33	135
060		33,4	14,3	17,8	1,56	7	169	38,0	14,4	17,8	1,78	9	166	45,2	14,9	18,2	2,13	12	160	60,0	16,1	19,1	2,85 2	2 145	64,0	16,3	3 19,3	3,06	26	140
070		38,5	16,1	21,8	1,80	7	167	43,8	3 16,2	21,8	2,06	9	164	52,0	16,8	22,3	3 2,47	13	157	69,0	18,8	24,0	3,27 2	4 140	74,0	19,0	24,2	2 3,54	28	132
080		45,9	19,6	25,2	2,17	8	165	52,0	19,7	25,2	2,48	11	160	62,0	20,5	25,7	2,97	15	151	82,0	21,6	26,6	3,93 2	7 128	89,0	21,8	3 26,9	4,22	31	119
017	40	10,7	5,5	6,5	0,50	9	284	12,2	2 5,5	6,5	0,58	12	276	14,6	5,7	6,6	0,69	18	261	19,7	5,5	6,2	0,94 3	3 226	21,	5 5,5	6,3	1,03	40	209
021		13,1	6,7	7,6	0,62	9	278	14,9	9 6,8	7,6	0,71	12	269	17,8	7,0	7,7	0,85	18	252	23,8	6,9	7,5	1,14 3	1 212	26,	1 6,9	7,6	1,25	37	194
026		14,8	7,0	7,8	0,71	9	269	17,0	7,0	7,8	0,81	12	258	20,3	7,2	7,9	0,97	18	237	27,1	7,9	8,5	1,30 3	1 187	29,	5 8,0	8,6	1,41	37	166
033				11,6			245				1,09		228				1,32		196				1,75					1,91		83
040		22,4	10,4	13,4	1,01	7	169	25,4	1 10,5	13,4	1,16	9	167	,	,	,	1,40		162	1 '	,	,	,	4 150	43,	1 12,2	2 14,8	3 2,02	28	145
050		1 '	,	17,2	,		168	33,0	14,5	17,2	1,53	10	165		,	,	1,84		160		,	,	2,48 2			,	,	3 2,65		
060				19,3			169	,	,	,	1,74		167		,	,	2,09			1 '	,	,	2,78 2		1 '	,	,	2,99		
070				23,6							2,01						2,42		158				3,21 2					2 3,48		134
080		44,7	21,7	27,3	2,11	8	165	51,0	21,9	27,3	2,42	10	161	61,0	22,6	27,9	2,91	15	152	80,0	24,1	29,1	3,84 2	5 130	87,0	24,3	3 29,4	4,14	29	122
017	45	-	-	-	-	-	-	11,8	3 6,1	7,0	0,56	12	277	14,2	6,3	7,1	0,67	17	264	19,0	6,1	6,9	0,91 3	1 231	20,	7 6,2	6,9	0,99	37	217
021		-	-	-	-	-	-	14,4	17,4	8,3	0,68	11	271	17,3	7,6	8,4	0,83	16	256	22,9	7,6	8,3	1,09 2	9 218	25,	1 7,7	8,4	1,20	35	201
026		-	-	-	-	-	-				0,78		262				0,95		241				1,26 2					1,37		
033		-	-	-	-	-	-	,	,	,	1,06		232	,	,	,	1,28		201	,	,	,	1,70 3			,	,	1,86		
040		-	-	-	-	-	-	,	,	,	1,12		167	,	,	,	1,36		163				1,83 2					1,99		
050		-	-	-	-	-	-				1,48						1,79						2,38 2					2,56		142
060		-	-	-	-	-	-				1,68		167				2,03						2,72 2					2,93		143
070		-	-	-	-	-	-	,	,	,	1,94			,	,	,	2,59			,	,	,	3,15 2			,	,	3,42		136
080		-	-	-	-	-	-	49,4	1 24,3	29,8	2,33	9	162				2,82			·	_	_	3,80 2		-			2 4,09		123
017	50	-	-	-	-	-	-	-	-	-	-	-	-				0,65		268				0,87 2					0,96		
021		-	-	-	-	-	-	-	-	-	-	-	-				0,80		260	1 '			1,05 2		1 '			1,15		
026		-	-	-	-	-	-	-	-	-	-	-	-				0,91		247				1,22 2		,			3 1,33		
033 040		-	-	-	-	-	-	-	-	-	-	-	-	,	,	,	1,23		208	1 '	,	,	,	4 137	1 '	,	,	1,80		
050		-	-	-	-	-	-	-	-	-	-	-	-				1,31						1,81 2					1,97		
060		-	-	-	-	-	-	-	-	-	-	-	-				1,72		162					149				3 2,48		
070		Ľ	-	-	-	-	-		-	-	-	-	-				l 1,95 2 2,52		156				2,67 2 3,09 2					3 2,89 9 3,36		
080		[-	-	-	-	-] -	-	-	-	-	-				2,71						3,79 2					3,30 3 4,09		
								<u> </u>						01,0	_1,0	JJ, 1	-,,,	.0	. 50	1.5,0	0,0	55,0	5,152	.5 102	30,0	,2	- 00,0	. 1,00		

Обозначения:

LWT

- Температура воды на выходе, °С

САР, кВт

- Номинальная холодопроизводительность нетто = холодопроизводительность брутто + холодопроизводительность, соответствующая располагаемому давлению (расход х давление/0,3)

СОМР. кВт UNIT, кВт

- Мощность, потребляемая компрессорами
- Мощность, потребляемая агрегатом (компрессоры, вентилятор, схема управления и насосы), минус холодопроизводительность, соответствующая располагаемому давлению (расход х давление/0,3)

COOL, л/сек COOL, кПа Press, κΠa

- Расход воды в испарителе
- Перепад давлений в испарителе
- Располагаемое давление на выходе агрегата, имеющего гидромодуль с одним насосом
- Холодопроизводительность при номинальных условиях по стандарту Eurovent

Поправочные коэффициенты для полной нагрузки по результатам лабораторных испытаний по стандарту Eurovent:

1,000 Холодопроизводительность (нетто) Показатель энергетической эффективности 1,000 Перепад давлений на испарителе 1,000

Условия измерений:

Агрегаты стандартного исполнения

R-407C Хладагент: Повышение температуры в испарителе: 5 K Теплоноситель:

вода $0,44 \times 10 \text{ M}^{-4} (\text{M}^2 \text{ K})/\text{BT}$

Коэффициент загрязнения:

Рабочие характеристики измерены по стандарту EN 12055

Теплопроизводительность при низкой температуре наружного воздуха

В таблице приведены мгновенные значения теплопроизводительности без учета снижения производительности вследствие образования инея и оттаивания.

Общая теплопроизводительность рассчитывается с учетом этих явлений, которые зависят от температуры и относительной влажности наружного воздуха.

Поправочные коэффициенты для расчета общей теплопроизводительности

Температура воды	Температура наружного воздуха, °С (при относительной влажности 87%)									
на выходе, °С	-10	-5	0	7	10					
30	0,88	0,85	0,87	1	1					
35	0,87	0,85	0,87	1	1					
40	0,88	0,85	0,87	1	1					
45	0,89	0,86	0,88	1	1					
50	0,91	0,89	0,91	1	1					

Компьютерная программа подбора агрегатов фирмы «Керриер» позволяет рассчитать их общую теплопроизводительность по фактической относительной влажности на месте эксплуатации. Если Вы хотите подобрать агрегат с учетом данного эффекта, обращайтесь в представительство «Керриер».

Техническое описание

Серия: 30RYH

Номинальная холодопроизводительность 18-76 кВт Номинальная теплопроизводительность 19-80 кВт

Часть 1 - Общие сведения

Описание системы

Тепловой насос воздух-вода предназначен для установки в помещении, оснащен одним или двумя спиральными компрессорами, вентилятором для канальной подачи и самонастраивающимся микропроцессорным контроллером, работает на хладагенте HFC-407C, не разрушающем озоновый слой.

Обеспечение качества

- Агрегаты серии 30RYH соответствуют следующим требованиям Директив Европейского Сообщества:
 - по машиностроению: 98/37/СЕ со всеми изменениями,
 - по низковольтному оборудованию: 73/23/ЕЕС со всеми изменениями,
 - по электромагнитной совместимости: 89/336/
 EEC со всеми изменениями,

а также отвечают применимым рекомендациям европейских стандартов:

- безопасность машин, электрическое оборудование машин, общие правила: EN 60204-1;
- электромагнитное излучение: EN 50081-1;
- кондуктивное излучение: EN 50081-2;
- помехоустойчивость: EN 50082-2.

Агрегаты серии 30RYH сконструированы и испытаны в соответствии с системой поддержки качества, сертифицированной по стандарту ISO 9001.

Агрегаты серии 30RYH изготовлены в соответствии с системой мер по охране окружающей среды, сертифицированной по стандарту ISO 14001.

Приведенные в документации технические характеристики определены согласно стандарту Eurovent.

Перед отгрузкой все агрегаты проходят рабочие испытания.

Часть 2 - Описание компонентов

Компрессор

■ Герметичный спиральный компрессор, имеющий только 3 движущихся элемента. Двухполюсный электродвигатель, охлаждаемый всасываемым газом, встроенное реле защиты от перегрузки и (или) реле защиты от перегрева. Компрессор заправлен полиэфирным синтетическим маслом, уровень которого контролируется через смотровое стекло.

Теплообменник хладагент-вода

- Пластинчатый теплообменник из нержавеющей стали со сварными медными соединениями. Теплоизоляция из пенопласта. Реле протока для защиты от замораживания (входит в стандартную комплектацию для всех исполнений).
- Типоразмеры 30RYH 017-033: водяной теплообменник и гидромодуль размещены в техническом отсеке, изолированном от наружного воздуха. Типоразмеры 30RYH 040-080: водяной теплообменник и гидромодуль оборудованы электронагревателем для за-

щиты от замораживания в случае отключения при температуре наружного воздуха до -10 °C.

Теплообменник хладагент-воздух с вентилятором

- Одна вертикальная секция теплообменника из медных труб с внутренним оребрением. Надежный контакт труб с внешним алюминиевым оребрением обеспечен дорнированием. Электронагреватель для защиты от обмерзания вмонтирован в основание теплообменника.
- Малошумный осевой вентилятор для канальной подачи воздуха с аэродинамическим рабочим колесом. Трехфазный двухскоростной (24/12 с⁻¹) электродвигатель, класс нагревостойкости изоляции F, степень защиты IP 55, тепловое реле защиты от перегрузки. Нагнетательное отверстие расположено сверху и снабжено жестким воротом для соединения с воздуховодом.

Контур хладагента

В каждом контуре установлены: 4-ходовой клапан реверсирования цикла, клапан жидкостной линии, индикатор влажности, 2-ходовое расширительное устройство, ресивер-теплообменник для защиты компрессора от попадания жидкого хладагента, съемный сетчатый фильтр линии всасывания, предохранительный клапан высокого давления (на типоразмерах 30RYH 040-080), датчики давления и температуры, а также реле высокого давления с ручным возвратом в исходное состояние. Цельносварная конструкция контура обеспечивает его полную и долговременную герметичность. Контур заполнен хладагентом HFC-407C.

Панель управления

Панель управления закрыта дверцей. На панели расположены вводной выключатель, предохранители и автоматические выключатели, контакторы компрессоров, вентилятора и циркуляционного насоса, тепловые реле, трансформатор низкого напряжения (24 В) для питания цепи управления и контроллер PRODIALOG Plus.

Агрегат подключается к трехфазной сети с изолированной нейтралью одним силовым кабелем.

Основание и корпус

Основание и корпус изготовлены из листовой оцинкованной стали и окрашены светло-серой (RAL 7035) полиэфирной порошковой эмалью горячей сушки. Съемные панели крепятся фиксаторами, поворачивающимися на четверть оборота. В моделях 30RYH 017-033 компрессор, водяной теплообменник и гидромодуль размещены в техническом отсеке, изолированном от окружающего воздуха.

Гидромодуль

Встроенный в тепловой насос гидромодуль включает в себя съемный сетчатый фильтр, расширительный бак, один циркуляционный насос (для типоразмеров 30RY 040-080 возможна опция с двумя циркуляционными насосами) с трехфазным электродвигателем, реле протока воды, предохранительный клапан с порогом срабатывания 3 бара, клапан регулирования расхода, манометры и продувочные клапаны.

Контроллер PRO-DIALOG Plus

Контроллер выполняет следующие функции:

Управление

- Регулирование температуры воды по ПИД-закону с выравниванием продолжительности работы компрессоров. Система постоянно подстраивает значение времени изодрома и полностью исключает частое включение компрессоров. Тепловой насос надежно работает при минимальном объеме воды в контуре, что во многих случаях позволяет отказаться от бака-накопителя (см. выше: «Минимальный объем воды в контуре»).
- Регулирование давления нагнетания (управление скоростью вращения вентилятора) на основе самонастраивающегося адаптивного алгоритма.
- Управление работой циркуляционного насоса (как опция – исполнение с двумя насосами с автоматическим переключением).
- Переключение на вторую уставку температуры (например, во время отсутствия людей в помещении).
 Изменение уставки в зависимости от температуры воздуха или разницы температур воды на входе и выходе.
- Автоматическое, в зависимости от температуры наружного воздуха, реверсирование цикла с регулируемой зоной нечувствительности. В качестве опции устанавливается релейный блок управления дополнительным электрическим нагревателем, который поддерживает до четырех ступеней регулирования мощности. Включение последней ступени происходит при аварийном останове теплового насоса.

Защита

- Система следит за изменениями рабочих параметров (значений температуры, давления и проч.) и управляет работой компрессора так, чтобы параметры оставались в рабочей области. Если значение одного из параметров выходит за пределы рабочей области, агрегат отключается, и система сообщает о характере неисправности. Останов холодильного контура или всего агрегата происходит при возникновении следующих неисправностей:
 - низкое давление всасывания,
 - высокое давление нагнетания,
 - низкая температура в линии всасывания,
 - низкая температура входящей воды в режиме обогрева,
 - перегрузка компрессора или циркуляционного насоса,
 - обратное вращение компрессора,
 - отказ датчиков температуры и давления,
 - неисправность контроллера или нарушение связи,
 - срабатывание предохранительного устройства в системе потребителя,
 - срабатывание системы защиты водяного теплообменника от замораживания,
 - для диагностики отказов система генерирует более пятидесяти аварийных кодов.

Операторский интерфейс

- На панели управления контроллера расположены светодиоды, которые отображают состояние системы или указывают на характер неисправности, два цифровых индикатора, мнемосхема холодильного контура и клавиатура.
- Расположенные на мнемосхеме кнопки позволяют просмотреть значения рабочих параметров: температуры воды на входе и выходе, температуры окружающего воздуха, давлений и температур на линиях всасывания и нагнетания, уставок, времени работы компрессоров и числа их пусков.
- Для диагностики системы и настройки всех ее параметров предусмотрены следующие десять меню: «информация», «температура», «давление», «уставки», «входные параметры», «тестирование», «конфигурация», «аварийные коды», «журнал аварий» и «журнал работы».

Дистанционное управление тепловым насосом

- С помощью гальванически развязанных контактов можно:
 - включать и отключать систему;
 - выбирать режим охлаждения или отопления;
 - подключать находящееся на стороне потребителя защитное устройство;
 - задавать вторую уставку* (например, на время отсутствия людей в помещении);
 - ограничивать потребляемую мощность* (в моделях 30RYH 050-080).
 - * реализуется только одна из этих двух функций
- В системе предусмотрены следующие выходы:
 - для реле пуска бойлера (в случае останова теплового насоса из-за чрезмерного понижения температуры наружного воздуха);
 - для сигнализации об аварийной ситуации в каждом контуре.
- C помощью устанавливаемой по отдельному заказу платы «CNN Clock Board» можно:
 - управлять двумя тепловыми насосами, работающими параллельно по схеме «ведущий-ведомый»;
 - задавать программы управления по времени (до 8 периодов в неделю);
 - задавать время работы по второй уставке (до 8 периодов в неделю);
 - задавать время работы вентилятора на малой частоте вращения (например, по ночам);
 - задавать время работы с ограничением потребляемой мощности;
 - интегрировать тепловой насос в систему управления инженерным оборудованием объекта через последовательный порт RS 485.

Производитель оставляет за собой право вносить изменения в спецификацию любого изделия без предварительного уведомления. XII-2001

12 30RYH